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We study the spin edge states in the quantum spin-Hall �QSH� effect on a single-atomic layer graphene-
ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the
energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs
of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the
Bloch function on the complex-energy Riemann surface �RS�. The topological aspect of the QSH phase can be
distinguished by the difference of the winding numbers of the spin edge states with different polarized direc-
tions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and
Mele �Phys. Rev. Lett. 95, 146802 �2005��.
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Since the discovery of the integer quantum-Hall effect
�IQHE� about three decades ago,1 topological invariants,
which classify the electronic states, have been well accepted
as a powerful tool for understanding the quantum many-body
phases which have bulk energy gaps.2 Historically, the pio-
neer work was performed by Thouless, Kohmoto, Nightin-
gale, and den Nijs,3 who recognized that the IQHE can be
understood in terms of topological invariants known as
Chern numbers,4 which are integrals of the k-space Berry
curvatures of the bulk states over the magnetic Brillouin
zone. While IQHE finds its elegant connection through the
adiabatic curvature with bulk topological invariants,
Halperin5 first stressed that the existence of the sample
edges, which produces the current-carrying localized edge
states in the Landau energy gap, is essential in the Laughlin’s
gauge invariance argument.6 Hatsugai further developed a
topological theory of the edge states,7 in which topological
invariants are the winding numbers of the edge states on the
complex-energy Riemann surface �RS�.

Very recently, another striking topological quantum phe-
nomenon, i.e., the quantum spin-Hall effect �QSHE�, was
identified8,9 after long-distance efforts on metallic and con-
ventionally insulating spin-Hall effects,10–12 and soon after
has been attracting extensive current interest13–26 due to its
basic physics and its potential application in dissipationless
spintronics. Unlike charge IQHE, whose presence fundamen-
tally rely on the breaking of the time-reversal �T� symmetry
via external magnetic field1 or intrinsic magnetic gauge
flux,27,28 QSHE does not violate the T symmetry, which im-
plies the absence of the nonzero Chern invariants in QSHE
insulators. Then, it turns out that a Z2-valued topological
invariant could be associated with QSHE.9 This Z2 topology
is, as one selective choice, characterized by whether the
number of Kramers doublet localized at the edges in a strip
geometry is even �nonzero� or odd. If even, the insulating
phase is an ordinary Bloch insulator; otherwise, the insulat-
ing phase is a QSHE insulator.

To study QSHE and Z2 topological order, Kane and Mele
introduced the model of graphene,8 which consists of two
copies of Haldane’s model,27 one for spin-up electrons along
some axis and one for spin-down electrons. T symmetry can
be maintained if the intrinsic IQHE magnetic fields are op-

posite for the two spin components. To make the model more
physical in that realistic mixing of the two spin components
should emerges, a Rashba spin-orbit coupling term is further
included,9 which now becomes the well-known Kane-Mele
�KM� model. The KM model is the simplest possible model
in that it has four spin-split bands, which is the minimum
number required for the nontrivial phase to exist.26 For this
reason, the KM model has received the most attention in the
other studies,16,17,22,29 in which the main focus is on the
boundary phase twist and disorder effect on QSHE.

In this paper, we give a topological study of the spin edge
states and its relation with QSHE by using the KM model.
This study closely parallels with Hatsugai’s topological
theory of edge-state IQHE in that we are seeking the winding
numbers of the spin edge states on the complex-energy RS.
We show that the spin edge state energy loops cross the holes
of the RS, generating winding numbers I↑ and I↓ for spin-up
and spin-down electrons, respectively. The quantized charge-
�spin�Hall conductance could be expressed as a summation
�difference� in the spin-up and spin-down winding numbers.
Thus we propose an edge-state topological invariant Is= I↑
− I↓ to distinguish a quantum spin-Hall �QSH� insulator from
an ordinary insulator. If Is is zero, the insulating phase is an
ordinary insulator; otherwise, the insulating phase is a QSH
insulator. We stress that this classification between topologi-
cal and ordinary insulating phases survives but is strongly
modified by the weak mixing of the two spin components,
which reflects the fact that although the exact quantization of
the spin-Hall conductance is destroyed by the spin-
nonconserved perturbation, the QSH phase is still topologi-
cally distinct from the ordinary insulating phase.

Now we consider the tight-binding KM model of
graphene,8,9 which generalizes Haldane’s model27 to include
spin with T-invariant spin-orbit interactions

H = t �
�ij��

ci�
† cj� + i�SO �

��ij����
�ijci�

† s��
z cj� + i�R �

�ij��
ci�

† �s

� d̂ij�zcj� + ���
i

�ici�
† ci�. �1�

The first term is the nearest-neighbor hopping term on the
graphene �honeycomb� lattice while the second term is the
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mirror symmetric spin-orbit interaction which involves spin-

dependent second-neighbor hopping. �ij = �2 /�3��d̂1� d̂2�z

=	1, where i and j are next-nearest neighbors, and d̂1 and

d̂2 are unit vectors along the two bonds that connect i to j. sz

is a Pauli matrix describing the electron’s spin. Here the
amplitude �SO can be calculated determined either by pertur-
bation theory30 or by the first-principles calculations,31–33

which suggest that the opened band gap �see Eq. �35� below�
by the �SO term ranges from 	0.001 �Ref. 32� to
	0.05 meV,33 and can be prominently enhanced by
impurity-induced sp3 distortion of the flat graphene lattice.34

The third term in Eq. �1�, which will arise due to a perpen-
dicular electric field or interaction with a substrate, is a
nearest-neighbor Rashba coupling term, which explicitly vio-
lates the z→−z mirror symmetry. The amplitude �R of the
Rashba term can be experimentally determined by measure-
ment of the spin angle-resolved photoemission
spectroscopy35 or by measurement of the spin relaxation36,37

in graphene. Finally, the fourth term in Eq. �1� is a staggered
sublattice potential ��i=	1�, which violates the symmetry
under twofold rotations in the plane.

For the bulk graphene, this Hamiltonian can be written in
the momentum space. For each k the Bloch wave function is
a four-component eigenvector 
u�k�� of the Bloch Hamil-
tonian matrix H�k�

H�k� =�
Z − �� Y − iX 0 ia−

Y + iX − Z + �� − ia+
� 0

0 ia+ − Z − �� Y − iX

− ia−
� 0 Y + iX Z + ��

� �2�

with X= t�isin�k ·ai�, Y = t�icos�k ·ai�, Z=−2�SO�isin�k ·bi�,
and a	=�R�e	i
/3eik·a3 −eik·a2 +e�i
/3eik·a1�. Here a1= �−

�3
2 ,

− 1
2 �a, a2= �0,1�a, and a3= �

�3
2 ,− 1

2 �a represent the vectors
from sublattice site A �red circles in Fig. 1� to its three near-
est sublattice sites B �green circles in Fig. 1�, respectively,
and b1=a2−a3, b2=a3−a1, and b3=a1−a2 represent the vec-
tors between the nearest same sublattice sites. No doubt, the
Hamiltonian �2� can also be written in terms of the SO�5�

Clifford algebra, which is a very helpful technique to deduce
Z2-valued topological invariants.38

To explore the edge topological invariant characterizing
the QSH phase, we now turn to study the graphene ribbon
with zigzag edges �see Fig. 1�, which is periodic in the x
direction while it has two edges in the y direction. In the
following, we replace index i with �mns� to denote the lattice
sites, where �mn� label the unit cells and s label the sublattice
A and B in this cell. Since the graphene ribbon is periodic in
the x direction, we can use a momentum representation of the
electron operator

cmns,� =
1

�Lx
�

k

eikX�mns��ns,��k� , �3�

where �X�mns� ,Y�mns�� represents the coordinate of the site s in
the unit cell �mn� and k is the momentum along the x direc-
tion. For simplification, let us first consider the spin-
conserved case, i.e., the Rashba term in Hamiltonian �1� is
set to be zero. Also, we let the staggered sublattice potential
vanishes and only consider the first two terms in the Hamil-
tonian �1�. Now let us consider the one-particle state 
�k��
=�n,s,�ns��k��ns,�

† 
0�. Inserting it into the Schrödinger equa-
tion H
�=�
�, one can get the following eigenvalue equa-
tions for A- and B-sublattice sites:

�� + p2�nA↑ = p1nB↑ + t�n−1�B↑ + p3��n+1�A↑ + �n−1�A↑� ,

�4�

�� − p2�nA↓ = p1�nB↓ + t��n−1�B↓ − p3���n+1�A↓ +��n−1�A↓� ,

�5�

�� − p2�nB↑ = p1nA↑ + t�n+1�A↑ − p3��n+1�B↑ + �n−1�B↑� ,

�6�

�� + p2�nB↓ = p1nA↓ + t�n−1�A↓ + p3��n+1�B↓ + �n−1�B↓� ,

�7�

where p1=2t cos�
�3
2 ka�, p2=2�SO sin��3ka�, and p3

=2�SO sin�
�3
2 ka�. Eliminating the B�A�-sublattice sites, we

obtain the difference equation for A�B�-sublattice sites

f1n = f2�n+2 + n−2� + f3�n+1 + n−1� , �8�

where f1=�2− p2
2− p1

2− t2−2p3
2, f2= p3

2, f3= p1t−2p2p3 and
nA��nB�� was replaced by n. Equation �8� is the so-called
Harper equation.39 Note that since the spin sz is conserved,
the spin-up and spin-down electrons satisfy the same Harper
Eq. �8�.

Now we represent Eq. �8� in the transfer-matrix form. For
this purpose we introduce a new wave function �n, which is
a linear transformation of the original wave function n

�n = n	 t�n−1 + n−2, �9�

where t	= ��b2+4�2+d�	b� /2 with b=−f3 / f2 and d
= f1 / f2. The new wave function �n can be written in the
following transfer-matrix form

FIG. 1. �Color online� Structure of a graphene ribbon with zig-
zag edges, consisting of sublattices A and B. The width of the
graphene ribbon is N. Every unit cell contains N numbers of A and
B sublattices.
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 �n

�n−1
� = M̃����n−1

�n−2
� ,

with

M̃��� = 	t	 − 1

1 0
� . �10�

Although �n is a transformation of the original wave func-
tion n, here we also can take �0 and �N as the wave func-
tions of two edges, which are linked by a reduced transfer
matrix as follows:

�N+1

�N
� = M����1

�0
� , �11�

where

M��� = �M̃����N = M11 M12

M21 M22
� . �12�

All kinds of solutions of Eq. �12� are obtained by different
choices of �0 and �1. Now we study the energy spectrum of
the graphene ribbon with special attention to the edge states.
The general boundary condition is

�N+1 = �0 = 0. �13�

With Eqs. �11� and �12� and the boundary condition �13�, one
can easily get that the solutions satisfy

M21��� = 0 �14�

and
�N = M11����1. �15�

If we use a usual normalized wave function, the state is
localized at the edges as

�
M11���
� 1 localized at n � 1�down edge� ,


M11���
� 1 localized at n � N�up edge� .
� �16�

Because the analytical derivation is very difficult, we now
turn to start a numerical calculation from Eq. �1� with �R and
�� setting to be zero. Figure 2�a� shows the energy bands for
the graphene with zigzag edges with the intrinsic spin-orbit
coupling strength �SO=0.03t, same as that in Ref. 8. From
Fig. 2�a� one can see that there are two branches of spin-
degenerate dispersed energy bands with two pairs of spin
states lying in the energy gap. These two pairs of spin states
cross at the T-invariant point k=
 and are localized at the
edges of the graphene ribbon. To show the spin localization
features of these gapless spin states, we plot in Figs. 2�b� and
2�c� the spin �z-component� distribution along the graphene
strip for the two pairs of edge states at k=0.99
 and 1.01
,
respectively. At the left side of the crossing point k=
 �Fig.
2�b��, the spin-up �down� edge state with lower energy �1 is
localized at the down �up� edge of the graphene ribbon while
the spin-up �down� edge state with upper energy �2 is local-
ized at the up �down� edge of the graphene ribbon. On the
other hand, at the right side of the crossing point k=
 �Fig.
2�c��, the spin-up �down� edge state with lower energy �1 is
localized at the up �down� edge of the graphene ribbon while
the spin-up �down� edge state with upper energy �2 is local-
ized at the down �up� edge of the graphene ribbon. Thus, if

we trace the spin-up flow of the edge states when varying the
momentum k in one period, it can be found that the electrons
with different spin propagate in opposite directions and that
the electronic state of graphene is a QSH state. The spin-Hall
conductivity has been shown as �S=2 in units of e /4
 by
different methods.

Before introducing the winding number of the spin edge
states on the complex-energy RS, let us try to interpret the
above two numerical characteristics. The first one is that
there are always two energy-degenerate edge states appear-
ing localized at opposite edges. To explain this issue, we
suppose the spin edge states to be exponentially localized on
the boundary with the following ansatz40,41

n = �n , �17�

where � is a complex number. Inserting Eq. �17� into the
Harper Eq. �8�, one can easily get the complex number �
satisfying the following equation:

�� + �−1�2 − b�� + �−1� − �d + 2� = 0. �18�

That means

� + �−1 = 	 t	. �19�

It is trivial to see from Eqs. �18� and �19� that if � is a
solution, then �−1 is also to be. That means if there is an edge
state localized near one boundary, at the same time there is
another edge state localized near opposite boundary. More-
over, note that the conservation of the spin sz, i.e., the
spin-up and spin-down electrons satisfy the same Harper Eq.
�8�, one easily find that if � is a solution describing an edge
state with spin up localized near one boundary, then �−1 is
another solution describing an edge state with spin-down lo-
calized near opposite boundary. That is the intrinsic reason
for the second feature that there are always two edge states
with opposite spins localized near opposite edges.

Now we show that similar to charge IQHE, QSHE of the
graphene ribbon is associated with winding number of the
spin edge states on a complex-energy RS. Within the topo-

FIG. 2. �Color online� �a� Energy spectrum for the graphene
ribbon with zigzag edges. The spin-orbit coupling parameter in Eq.
�1� is chosen as �SO=0.03t and the last two terms are neglected.
The bands crossing the gap are spin-filtered edge states, which are
depicted in �b� and �c� by plotting their spin �sz� distribution on the
lattice sites with k=0.99
 and k=1.01
, respectively. To be clearer,
the energies used in the right panels are denoted by �1 and �2 for
lower and upper spin-degenerate edge states, respectively.
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logical edge theory,7 this number is, as well as the Chern
number, a well-defined topological quantity. In order to well
understand the winding numbers of the spin edge states in
QSHE, let us first consider that of the edge states in charge
IQHE. First we ignore the open condition and consider the
bulk Bloch function at sites with y coordinate of Ly. For
Bloch function, �0

�b� and �1
�b� compose an eigenvector of M

with the eigenvalue �

M����1
�b�

�0
�b� � = �����1

�b�

�0
�b� � . �20�

In order to discuss the wave function of the edge state, we
extend the energy to a complex energy. In the following, we
use a complex variable z instead of real energy �. From Eq.
�20� we get

��z� =
1

2
���z� − ��2�z� − 4� �21�

and

�N = −
M11�z� + M22�z� − �

− M11�z� + M22�z� + �
M21�z��1, �22�

where ��z�=Tr�M�z�� and �=��2�z�−4. Clearly

det M��� = 1 �23�

since det M̃���=1. From Eq. �22�, one can find that the ana-
lytic structure of the wave function is determined by the
algebraic function �=��2�z�−4. The RS of �=��2�z�−4 on
the complex-energy plane can be built by the conglutination
between different analytic brunches. The close complex-
energy plane can be obtained from the open complex-energy
plane through spheral-pole mapping. Now let us discuss the
analytic structure of �=��2�z�−4 on the open complex
plane. If the system has q energy bands, i.e.,

�� ��1,�2�, . . . ,��2j−1,�2j�, . . . ,��2q−1,�2q� , �24�

where � j denote energies of the band edges and �i�� j, i
� j, then � can be factorized as

� = ��2�z� − 4 =��
j=1

2q

�z − � j� . �25�

In the present graphene system, there are two energy bands,
so q=2. The two single-valued analytic branches are defined
on the plane with two secants down or up the bank of which
we choose corresponding complex angles, which is shown in
Fig. 3.

In order to ensure ��� j��0 �j=1, . . . ,g=q−1� �Here, � j
is the energy of the edge state in the gap ��2j ,�2j+1��, we
divide the two single-value analytic branches based on the
parity of j. Let us consider the case that the energy z lies in
the band ��2j−1 ,�2j� �see Fig. 3�a��. The left side of this
energy band is the �j−1�th gap and the right side is the jth
gap. When the energy z moves from the jth band to the �j
−1�th gap �the jth gap� along an arbitrary path c1 �c2�, only
the singularities �2j−1 and �2j have contributions to the vari-
ance of the principal value of argument of �. On the up bank

of the secant, we distinguish two branches R+ and R− as the
following: for j is even, if we set arg�z−�2j−1�=0 and
arg�z−�2j�=
, which corresponds to ��� j−1��0���� j�
�0� when z moves along c1 �c2�, then the branch R+ is
defined as a complex plane with q secants. If we set arg�z
−�2j−1�=2
 and arg�z−�2j�=
, which corresponds to
��� j−1��0���� j��0� when z moves along c1 �c2�, then the
branch R− is defined as a complex plane with q secants. For
j is odd, the definitions of R+ and R− are reverse to those for
j is even. So, if z lies in the jth gap from the lowest one on
the real axis

��− 1� j�� 0, z�real� on R��� = + ,− � �26�

and at energies � j of the edge states we have

��� j� = ��− 1� j
M11�� j� − M22�� j�
 , �27�

where � j �R�, �=+,−. In addition, one can easily obtain

������− 2 for j odd

�2 for j even
� , �28�

where the energy � �on R�� is in the jth gap.
When the branches R+ and R− on the open complex-

energy plane are mapped to the close complex-energy plane
through spheral-pole projection, one can get two single-value
analytic spherical surfaces. The RS is obtained by gluing the
two spherical surfaces at these branch cuts. Make sure the 	
banks face the � banks of other sphere. �see Fig. 3�b�. Note
that there are two real axes after gluing. In our model, the
genus of the RS is g=1 for spin-up �or spin-down� electrons,
which is the number of energy gaps. The wave function is
defined on the g=1 RS �g=1�kx�. The branch of the Bloch
function is specified as ��0, which we have discussed
above. With Eqs. �22�, �27�, and �28�, and using the fact
when �Ly−1�� j�=0 for � j �R� and �Ly−1�� j��0 for � j

�R−�, one can obtain that when the zero point is on the
upper sheet of RS �R+�, the edge state is localized at the

FIG. 3. �Color online� �a� The open complex-energy plane is
mapped to the close complex-energy plane through spheral-pole
projection. �b� Two sheets with two cuts which correspond to the
energy bands of the graphene nanoribbons. The RS of the Bloch
function is obtained by gluing the two spheres along the arrows
near the cuts.
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down edge; when the zero point is on the lower sheet of RS
�R−�, the edge state is localized at the up edge.

In Fig. 4, on the RS �g=1�kx� of our system the energy gap
corresponds to the loop around the hole of the �g=1�kx� and
the energy bands correspond to the closed paths vertical to
the energy-gap loop on the �g=1�kx�. The Bloch function is
defined on this surface. For the fixed kx there is always g
=1 zero point at the down-edge-state energy � j. Since there
are two real axes on the �g=1�kx�, correspondingly, there is
g=1 zero point at the up-edge-state energy � j.

The above considerations are for the fixed kx. Now, let us
consider a family of the RSs �g=1�kx� parameterized by kx
changing in one of its periods. �g=1�kx� can be modified by
this change. However, all the RSs �g=1�kx� with different kx
are topologically equivalent if there are stable energy gaps in
the two-dimensional �2D� energy spectrum.

On the genus g=1 RS, the first homotopy group is gener-
ated by 2g=2 generators, �i and �i, i=1. The intersection
number of the curves �including directions�7 is given by �see
Fig. 5�

I��i,� j� = �ij . �29�

Any curves on the RS are spanned homotopically by �i and
�i. When � j�kx� moves p times around the jth hole with
some integer t, one has

C�� j� � � j
p, �30�

which means

I��i,C�� j�� = t�ij . �31�

When the Fermi energy �F of the 2D system lies in the ith
energy gap, the charge Hall conductance is given by the
winding number of the edge state, which is given by the
number of intersections I�� j ,C�� j����I�C�� j��� between the

canonical loop � j on the RS and the trace of � j, i.e.,

�xy
j,edge = −

e2

h
I�C�� j�� . �32�

Similarly, the above expression can be obtained by the
Byers-Yang42 and Laughlin-Halperin5,6 gauge arguments.
The system with the periodic boundary condition in the x
direction and open condition in the y direction can be con-
sidered as a cylinder. By Laughlin gauge invariance argu-
ment, the vector potential A has to have the form A=n hc

eLx
�n

is an integer�. When the flux � threading the cylinder is
adiabatically turn on from ��0�=0 to ��T�=hc /e with ��
=hc /e a flux quantum, �A= hc

eLx
accords with the gauge ar-

gument, therefore, �A���� maps the system back to itself.
Basing on the single-electron assumption, When the Fermi
energy lies in the jth energy gap, there are I�C�� j�� states
�electrons� transferring from the down edge �y=1� to the up
edge �y=Ly −1� in net. The energy change during the adia-
batic process is �E= I�C�� j���−e�V, where Vy is a voltage in
the y direction. This gives the charge-Hall current Ix as fol-
lows:

Ix = c
�E

��
= �xyVy .

Then we get an expression for �xy
edge as Eq. �32�. The above

analysis is for the winding number of the edge states in
IQHE and it can be easily generalized to the winding number
of the spin edge states in QSHE when the spin degree of
freedom is considered. In the latter case, the winding number
of the spin edge state is given by the number of intersections
IS�� j ,C�� j�� ��IS�C�� j��, S=↑, ↓ for spin-up and spin-
down, respectively� between the canonical loop � j on the RS
and the trace of � j. From Fig. 4 one can observe that �
moves one time across the hole �j=1�, which means C���
�� and 
IS�C����
=1. Considering the winding direction
�see Fig. 5�, one obtain I↑�C����=1 for spin-up electrons
while I↓�C����=−1 for spin-down ones. Thus, the charge
Hall conductance is given by the summation over two spin
channels

�xy
�c�edge = �I↑ + I↓�

e2

h
� Ic

e2

h
= 0 �33�

while the spin-Hall conductance is given by the difference
between them

�xy
�s�edge = �I↑ − I↓�

�

2

e2

h
� Is

e

4

= 2

e

4

. �34�

When the finite on-site energy �� is considered while the
Rashba coupling is kept as zero, the two degenerate energy
bands will split. For the bulk graphene H�k� �Eq. �2��, one
can easily obtain the four dispersion energy bands

�k = 	 �X2 + Y2 + �Z	 �v�2 �35�

between which there is an energy gap with magnitude �
=2
��−3�3�SO
. We plot in Fig. 6 the energy dispersion with

FIG. 4. �Color online� RS of the Bloch function corresponding
to Fig. 2�a�. To clearly see the degenerate edge states with different
spin, we schematically separate their traces with different colors.
The orange and purple curves correspond to spin-up and spin-down
channels, respectively.

FIG. 5. Intersection number I�A ,B� of two curves A and B. Each
intersection point contributes by +1 or −1 according to the
direction.
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different �� and �SO. The condition ���3�3�SO provides a
finite bulk energy gap in the graphene. However, when the
Fermi energy lies in the gap, the graphene’s phases are dif-
ferent with different topology: for ���3�3�SO, the system is
an ordinary insulator and for ���3�3�SO, the system is a
topological insulator with QSH phase. Kane and Mele9 have
proposed a Z2 index describing the QSH phase, which is
determined by counting the number of pairs complex zeros
of P�k�=Pf��ui�k�
 
uj�k��� with 
ui�k�� as the wave func-
tions corresponding to the bulk Hamiltonian �2� and  as the
time-reversal operator. To understand these different phases,
Kane and Mele also studied the edge states of the graphene
ribbon with zigzag edges. However, the winding properties
of the edge states in the KM model has not been previously
considered, which just is the special focus of our present
study.

Considering nonzero ��, now let us investigate the topo-
logical winding numbers with zigzag edges. In this case, the
Harper equation for site A turns to have the same form as
Eq. �8�, provided that the p2 in the coefficients f1 and f3 is

replaced by p2	�� for spin-up and spin-down channels, re-
spectively. Similarly, one can introduce a new wave function,
as a linear transformation of the original wave functions �9�,
satisfying the matrix form with the transform matrix M̃���
�Eq. �10��. The p2 in the coefficients b, d, and t	 is now also
replaced by p2	�� for different spins. In evidence, the edge-
state energies become nondegenerate for the finite on-site
energy ��. Figure 7 shows the energy spectrum of the “zig-
zag” graphene ribbon in a QSH phase with ��=0.1t and
�SO=0.05t, which satisfy ���3�3�SO. From Fig. 7, one can
clearly see that the gapless edge states are localized near the
system boundary with different spins. The corresponding
complex-energy RS of the Bloch wave functions is topologi-
cally equivalent to Fig. 3. And no doubt this QSH phase can
be described by the difference in the winding numbers of the
edge states with different spins, i.e., Is= I↑− I↓=2, in units of
e /4
. On the other hand, one can obtain the charge-Hall
conductivity �c is zero since I↑=−I↓. As a comparison, we
draw in Fig. 8 the energy spectrum of an ordinary insulator
phase with ��=0.4t and �SO=0.05t. One can find that in this

FIG. 7. �Color online� Energy spectrum of the zigzag graphene
ribbon in the QSH phase with ��=0.1t and �SO=0.05t. The red and
blue lines represent the edge states localized at the down and up
edges of the system, respectively. And the circle and triangle label
the up and down spins, respectively.

FIG. 6. �Color online� Energy spectra of the bulk graphene �a� in the QSH phase with ��=0.1t and �SO=0.05t and �b� in the ordinary
insulator phase with ��=0.4t and �SO=0.05t. There are bulk gaps appearing in both two different phases.

FIG. 8. �Color online� Energy spectrum of the zigzag graphene
ribbon in the ordinary insulator phase with ��=0.4t and �SO

=0.05t. The red and blue lines represent the edge states localized at
the down and up edges of the system, respectively. And the circle
and triangle label the up and down spins, respectively.
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case �see Fig. 9�, there are no gapless edge states connecting
the two energy bands. The traces of the edge states in the
corresponding complex-energy RS are sunk in the bulk
bands, i.e., I↑= I↓=0, which means that the system in this
case is an ordinary insulator without QSHE. We thus con-
clude that while the previously studied topological winding
number index Ic�=I↑+ I↓� �Refs. 7, 43, and 44� has been veri-
fied to describe the IQH insulator, our present studied topo-
logical winding number index Is�=I↑− I↓� can be used to
characterize the QSH insulator.

Finally let us turn to consider the most complex case of sz
being nonconserved, i.e., the Rashba coupling �R, as well as
the on-site energy ��, is finite in the KM graphene model Eq.
�1�. After a straightforward derivation, we obtain the follow-
ing couple eigenvalue equations for �R�0:

�� 	 p2	��nA	 = p1�nB	 + t1��n−1�B	 	 p3���n+1�A	

+��n−1�A	� + ip��nB� − i�R��n−1�B�,

�36�

�� � p2	��nB	 = p1�nA	 + t1��n+1�A	 � p3���n+1�B	

+��n−1�B	� − ip	�nA� + i�R��n+1�A�,

�37�

where p2	= p2	�v, p	=2�R cos�
�3
2 ka	 


3 �, and “	” in
�nA�B�	 label the spin channels. Although the Harper equa-
tion and the corresponding transform matrix are very diffi-
cult to derive in this case, we can also distinguish the QSH
phase from the ordinary insulator phase by the topological

winding index introduced in the present paper directly from
the energy spectrum. As an example, we reinvestigate the
QSH phase and the ordinary insulator phase with the Rashba
coupling being a finite value �R=0.1t. The other parameters
are chosen be the same as those used in Fig. 7. The calcu-
lated energy spectrum �not shown here� turns to be essen-
tially the same as that depicted in Fig. 7. As a result, the
corresponding RS of the Bloch wave functions is topologi-
cally equivalent to Fig. 3. This means that in spite of finite
Rashba term, the system is still in the QSH phase with the
topological index Is=2. Therefore, although in this case the
spins are nonconserved �see Table I� and the exact quantiza-
tion of the spin-Hall conductance is destroyed by the spin-
nonconserved perturbation, the QSH phase of the graphene
system is still topologically distinct from the ordinary insu-
lating phase once provided that the Rashba term does not
change the system’s topological properties. This conclusion
keeps consistent with Ref. 9. If the Rashba spin-orbit cou-
pling �R turns much strong, the concept of the “spin edge
states” becomes faint and the winding number of the spin
edge states becomes meaningless.

Before ending the present paper, we would like to stress
that the topological index Is describing the QSH phase can
also be interpreted in terms of Laughlin and Halperin’s
arguments.5,6 In fact, in the QSH system with topological
integer Is= I↑− I↓, there are I↑ spin-up electrons transferred
from one edge to the other when a unit magnetic flux is
adiabatically through a cylindrical system by I↑ branches of
gapless edge states. And at the same time there are 
I↓
= I↑
spin-down electrons to be transferred with the opposite di-
rection �see Fig. 10�.

In summary, by theoretically studying within the KM
Hamiltonian a graphene strip with zigzag edges, we have
presented an alternative topological index Is to characterize
the QSH phase. The topological index Is describing QSH
phases has been defined as the difference in the winding
numbers of the spin-resolved edge states crossing the holes
of the complex-energy RS. Based on this topological index,
we have discussed different phases by modulating different
parameters in KM model, which agree well with the previous
studies in terms of the conventional Z2 topological invari-
ance.

This work was supported by NSFC under Grants No.
10604010, No. 10534030, and No. 60776063, and the Na-
tional Basic Research Program of China �973 Program� un-
der Grant No. 2009CB929103.

TABLE I. Comparison of the spin probability distribution ��sz��
of the lowest-energy edge states on the lattice sites in the cases
�R=0 and �R=0.1t. The other parameters are set as �so=0.05t and
��=0.1t and the momentum k is kept as k=0.99
.

Case �R=0 Case �R=0.1t

Lattice site index n �sz� Lattice site index n �sz�

1 0.9998 1 0.9635

2 0.0001 2 −0.0274

3 0.0001 3 0.0001

Total probability 1.0000 Total probability 0.9362

FIG. 10. �Color online� The Laughlin-Halperin diagram of the
QSH system.

FIG. 9. The RS of the Bloch function corresponding to Fig. 8, in
which the edge states are sunk in the energy bands and can not form
a loop around the hole.
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